In an excerpt from his new book, psychologist Louis Cozolino applies the lessons of social neuroscience to the classroom.
The human brain wasn’t designed for industrial education.
It was shaped over millions of years of sequential adaptation in
response to ever-changing environmental demands. Over time, brains grew
in size and complexity; old structures were conserved and new structures
emerged. As we evolved into social beings, our brains became incredibly
sensitive to our social worlds.
This
mixture of conservation, adaptation, and innovation has resulted in an
amazingly complex brain, capable of everything from monitoring
respiration to creating culture. This added complexity came with a cost.
Not only do all of these systems have to develop and interconnect, but
they also have to stay balanced and properly integrated for optimal
performance.
This evolutionary history poses a challenge for educators. While
findings from social neuroscience can provide some welcome guideposts
for teachers, they cannot substitute for the flexibility needed in the
classroom to accommodate a range of students. Students and teachers are
not uniform raw materials or assembly-line workers, but a diverse
collection of living, breathing human beings with complex evolutionary
histories, cultural backgrounds, and life stories.
If we are going to move forward, we will have to admit that a
one-size-fits-all model of education is doomed to fail the majority of
students and teachers.
And through understanding how students’ brains actually work and
using that knowledge to benefit classroom learning, we may be able to
positively influence classroom education and prepare students to better
face unknowable futures. Here are nine scientific insights that
educators might want to keep in mind. 1. The brain is a social organ.
Our brains require stimulation and connection to survive and thrive. A
brain without connection to other brains and without sufficient
challenge will shrink and eventually die—moreover, the modern human
brain’s primary environment is our matrix of social relationships. As a
result, close supportive relationships stimulate positive emotions, neuroplasticity, and learning.
That’s why it pays for teachers to create positive social experiences in the classroom.
From a neurobiological perspective, the position of the teacher is very
similar to that of the parent in building the child’s brain. Optimism,
encouragement, and giving someone the benefit of the doubt have been
shown to positively impact performance—and so does a caring and positive
regard for students. Promoting social-emotional learning programs that decrease student conflict and create positive social climates in the classroom are invaluable to learning.
The cerebral hemispheres have differentiated from one another and
developed specialized functions and skills. In general, the left
hemisphere has taken the lead on language processing, linear thinking,
and pro-social functioning while the right hemisphere specializes in
visual-spatial processing, strong emotions, and private experience.
Most tasks, though, involve contributions from both hemispheres. So,
it is important to understand how to engage both in the classroom
context.
Good teachers intuitively grasp this in their students, and they will seek to balance
the expression of emotion and cognition, encouraging overly rational
students to be aware of and explore their feelings while helping anxious
students develop the cognitive capabilities of their left hemispheres
to regulate their emotions.
Storytelling
can help here, as stories can serve as powerful organizing tools for
neural network integration. A story that is well told, containing
conflicts and resolutions and thoughts flavored with emotions, will
shape brains and connect people.
3. Early learning is powerful.
Much of our most important emotional and interpersonal learning
occurs during our first few years of life, when our more primitive
neural networks are in control. Early experiences shape structures in
ways that have a lifelong impact on three of our most vital areas of
learning: attachment,
emotional regulation, and self-esteem. These three spheres of learning
establish our abilities to connect with others, cope with stress, and
feel that we have value.
Every time children behave in a way they (or we) don’t understand, a
teacher has the opportunity to engage in an exploration of their inner
world. When painful experiences can be consciously thought about, named,
and placed into a coherent narrative, children gain the ability to
reintegrate dissociated neural networks of affect, cognition, and bodily
awareness.
Encouraging students to write about their experiences in diaries and
journals can help, as it lets students become the masters of their
experience and reducing anxiety and stress.
Research has shown that writing about your experiences can increase
well-being and help with emotional regulation, which may have been
impaired through early traumatic experiences.
4. Conscious awareness and unconscious processing occur at different speeds, often simultaneously.
Conscious awareness and explicit memory are but a small fraction of
the vast amount of neural processing that occurs each millisecond.
Think of how many things you do without having to think about them:
breathing, walking, balancing, even constructing the syntax of a
sentence, is handled automatically. The brain is able to process
incoming information, analyze it based on a lifetime of experience, and
present it to us in half a second. The brain then creates the illusion
that what we are experiencing is happening right now and that we are
making decisions based on our conscious thought processes.
Because of this, it is especially important to teach students to
question their assumptions and the possible influences of past
experiences and unconscious biases on their feelings and beliefs.
This is especially true when thinking about prejudice.
Because fear conditioning does not require conscious awareness, the
brain’s knee-jerk reaction to individuals of other races is unrelated to
our conscious attitudes. Open discussion and increased interracial
exposure can work against prejudice being turned into conscious beliefs and negative behaviors.
5. The mind, brain, and body are interwoven.
Physical activity exerts a stimulating influence on the entire brain
that keeps it functioning at an optimal level. Exercise has been shown
to stimulate the birth of new neurons in the hippocampus and to pump
more oxygen through the brain, stimulating capillary growth and
frontal-lobe plasticity.
Proper nutrition and adequate sleep are also essential to learning.
Although the brain is only a fraction of our body’s weight, it consumes
approximately 20 percent of our energy, which makes good nutrition a
critical component of learning. Sleep boosts cognitive performance and
augments learning while sleep deprivation limits our ability to sustain
vigilance and attention. Sleep deprivation has also been shown to impair flexible thinking and decision-making.
An awareness of these biological realities can lead to changes in school start times, lunch programs, and recess schedules.
Teachers can teach students about the importance of sleep and make
suggestions for better sleep habits, such as how to create a good sleep
environment and promote relaxation. Good nutrition and regular exercise
can be incorporated into the school environment. Teaching about the
interconnections among the brain, the body, and how we learn will
provide students with important scientific knowledge, which could
improve their academic performance and physical health.
In addition, learning can be enhanced by certain environmental
conditions and hampered by others. Inadequate school facilities, poor
acoustics, outside noise, and inadequate classroom lighting all
correlate with poorer academic performance. Chairs with poor support
hamper blood supply to the brain and impede cognition while temperatures
above 74–77 degrees Fahrenheit have been shown to correlate with lower
reading comprehension and math scores. A more hospitable climate for
learning can help performance by providing for the physical needs of the
body.
6. The brain has a short attention span and needs repetition and multiple-channel processing for deeper learning to occur.
Curiosity, the urge to explore and the impulse to seek novelty,
plays an important role in survival. We are rewarded for curiosity by
dopamine and opioids (feel-good chemicals in the brain), which are
stimulated in the face of something new. Because our brains evolved to
remain vigilant to a constantly changing environment, we learn better in
brief intervals.
This is likely one reason why variation in materials, breaks, and
even intermittent naps facilitate learning. It is probably important for
teachers to reestablish attention in their students every five to 10
minutes and continue to shift the focus of attention to new topics.
Learning also involves the strengthening of connections between
neurons. “What fires together wires together,” say neuroscientists,
which is why repetition supports learning while the absence of
repetition and exposure results in its decay. Teachers would do well to
make sure they repeat important points in their lessons to deepen
learning.
Given that visual, semantic, sensory, motor, and emotional neural
networks all contain their own memory systems, multichannel learning
engaging each of these networks increases the likelihood of both storage
and recall. We have an amazing capacity for visual memory, and written
or spoken information paired with visual information results in better
recall. There is a greater likelihood that learning will generalize
outside the classroom if it is organized across sensory, physical,
emotional and cognitive networks.
7. Fear and stress impair learning.
Evolution has shaped our brains to err on the side of caution and to
trigger fear whenever it might be remotely useful. Fear makes us less
intelligent because amygdala activation—which occurs as part of the fear
response—interferes with prefrontal functioning. Fear also shuts down
exploration, makes our thinking more rigid, and drives “neophobia,” the
fear of anything new.
Stressful situations trigger the release of the stress hormone
cortisol, which interferes with neural growth. Prolonged stress impairs
our ability to learn and maintain physical health.
Success in school depends upon a student’s ability to somehow decrease their stress.
The inclusion of stress-management techniques into the curriculum is an
obvious application of neuroscience to education that can improve
learning, emotional well-being, and physical health. Teachers can use
their warmth, empathic caring, and positive regard to create a state of
mind that decreases fear and increases neuroplasticity and learning.
8. We analyze others but not ourselves: the primacy of projection.
Our brains have evolved to pay attention to the behaviors and
emotions of other people. Not only is this processing complex, but it is
lightning fast, shaping our experience of others milliseconds before we
even become consciously aware of their presence. We automatically
generate a theory of what is on their mind—our ideas about what they
know, what their motivations may be, and what they might do next. As a
result, we are as quick to think we know others as we are slow to become
aware of our own motives and faults.
Taking our thoughts about others and trying them on for size has the
potential to teach us about ourselves and increase our empathic
abilities. Simple exercises that guide students to examine what and how
what they think and feel about others may be true for themselves can
open a window of self-awareness, empathy, and insight. Teachers can ask
students to examine the lives of historical figures and characters from
books and movies to help them gain a third-eye perspective on their own
strengths, motivations, and flaws.
9. Learning is enhanced by emphasizing the big picture—and then allowing students to discover the details for themselves.
When problems are represented at higher levels of abstraction,
learning can be integrated into larger schemas that enhance memory,
learning, and cognitive flexibility. Starting with major concepts and
repeatedly returning to them during a lecture enhances understanding and
memory, a phenomenon that increases when students create their own
categories and strategies of organizing information. Chunking material
into meaningful segments makes it easier to remember, and improves test
performance while increasing prefrontal activity during encoding.
When it comes to discovering the details, bear in mind that our
brains evolved to learn is through trial-and-error exploration. This is
true of learning and adapting to both our social and physical
environments. Therefore, using what we learn to attempt to solve
real-world problems and adjusting our behaviors or ideas based on the
results augments the retention of skills and information. We are born to
explore, and teachers who make use of that will probably find more
success in the classroom.